tekom =

EUROPE

Anne Tarnoruder

Standards and

Guidelines for API
Documentation

For Technical Writers, Software Developers,
Information and Software Architects

Practical Guides

1 Introduction

The purpose of standards and guidelines (S&G) for API documentation is to help
achieve consistency of content and style across various types and areas of the API
documentation.

API Documentation Deliverables

API documentation deliverables fall into two complementary categories: API reference
documentation and developer guides.

Documentation | Description
Deliverable

API reference Contains detailed reference information about all elements of APIs.

Created and maintained by developers in software source code, reviewed by technical
writers.

Written in structured mode.

Auto-generated from source code and integrated wi
delivered separately.

relevant developer guide or

If auto-generation option is not available or n
writers in the documentation system as part

Developer guide | Explains how to use the APIs.
Contains concepts, diagrams, setup/ini onptutorials, tasks, code samples, and more.

Created and maintained by te e ooperation with developers in the docu-
mentation system.

Written in freestyle m

t documentation.

— Encompass major ment languages and technologies, such as Java, JavaScript,
Microsoft. NET, C/C+ EST and OData.

— Are targeted at technical writers and software developers who co-author API refer-
ence documentation either in source code or in the documentation system.

The following topics are out of scope of this document:

— API design principles and guidelines.
— Actual auto-generation and production of API documentation.

6 © tcworld 2018

2 Terms and Concepts

Introduces the main concepts and terminology of APIs and API documentation.

Introduction to APIs

API (Application Programming Interface) is an interface provided by an application for
interacting with other applications. Essentially, an API comprises functions that other
applications can call and data they can access.

The following figure illustrates the basic structure of an API in object-oriented lan-
guages such as Java, JavaScript, .NET, or C/C++, which are discussed in this document,
and introduces the main API terms.

API] AP Method
#colleitiog pEralated Package/Namespace | A function that other
ckages or namespaces apps can call
R - Package/Namespace |
Package/Namespace
Package/Namespace
A collection of related
classes and interfaces Interface/Cla assed to a method
method1(param1, param2,)/,
method2({param1, param?2, ...
-1 field1
Interface/Class 11 CONSTANG T Constant
A collection of related A variable used to
methods (functions) and represent a fixed value
fields (data)
Field / \ | Enumeration (enum)
A data field that other | —]] A fixed set of related
apps can access constants

The following figure ple Java API structure (SAP NetWeaver 7.50 Enter-

prise Portal):

SAP NetWeaver 7.50 Enterprise Pori

All Classes

[Class FontentDescriptor

- WpC.api content provider. ContentDescriptor

222 ContentDescripter

Provides & descriptor for a content item of a custom content provider. Used by the Zcontanspravidex for describing the content it provides.

[
Fields

Modifier and Type Field and Description

atatic String

* com.sap.portal.admin.wizar
* com.sap.portal.admy
- atatic String

* ComplexComparatar

Constructor Summary
Constructors

s
Modifier and Type Method and Description
i gstContantiandlerin ()
- Retumns the 1D of the Toooranstandiaz
- stxiag %

Returns the aeation method used when adding the content item to a page.

© tcworld 2018 7

Terms and Concepts

Glossary

The following table introduces the API terms and terms related to API documentation,
which are used in this document.

APl element | A generic name for any element of an API, such as a package, namespace, interface, class,
method, property, constant, or enumeration.
APl documen- | A description written in the source code for each API element according to certain rules and
tation com- | syntax. These comments are processed by documentation generators. When documentation
ment generation is not available or applicable for certain scenarios or types of APIs they are docu-
mented manually.
For more information, see 4.1 Documentation Comments [page 13].
APl documen- | Tools that process source code to extract documentation comments and generate structured
tation genera- | API reference documentation, for example, the widely-used industry tools, such as Javadoc,
tors JSDoc, Doxygen, and Swagger.
documenta- | A tag in a documentation comment that instructs the generator how to format this part of
tion tag the comment. Each generator recognizes its own set 0 owever, there is a subset of
commonly used tags supported by most generators.
For more information, see 4.1.2 Tags [page 16] an Tags [page 17].
Note that this document describes a subset of th nly used tags. For a complete
reference of tags for a certain language or te 7 External Resources [page
66].
deprecated The state of an APl element that will ng long pported in future releases, and therefore
is not recommended for use. Dep annot be immediately removed from APIs,
because this can break ation is a tool for ensuring smooth transi-
tion between API releas
Deprecated elements according to the guidelines described in
4.2.1.1 @deprecated
exception an error occurs during the execution of a method. Excep-
d by a calling application, therefore they need to be docu-
ines, see 4.2.1.9 @throws Tag [page 26] and 4.2.4.2 <exception>
public vs. it is available in the public domain. An APl is private or internal, if access to
private APls | it is limited to"the vendor company and/or to its partners or selected customers.
Once an APl becomes available, both publicly or internally, it is a contract between the vendor
and its clients, so it should not be changed in a way that can break existing client code.
return type, | A value of a certain data type that is returned by a method.
value For documentation guidelines, see 4.2.1.6 @return Tag [page 23] and 4.2.4.6 <returns>
Tag [page 35].
REST (Repre- | REST APIs also known as RESTful Web services are cross-platform APIs used to perform CRUD
sentational (Create, Read, Update, Delete) operations on data resources over HTTP.
State Transfer) | go background information and documentation guidelines, see 5 REST and OData API Refer-
APIs ence Documentation [page 47].
SPI (Service | An interface defined by a vendor platform to be implemented or extended by a third-party
Provider application to provide a service integrated with the platform.
Interface) For documentation guidelines, see 4.3.3 Interface and Class Template [page 40].

© tcworld 2018

3 APl Documentation Processes

Outlines recommended processes and workflows for creating API reference documen-
tation.

Roles and Responsibilities

The following table describes the roles involved in the authoring of API reference docu-
mentation and their respective responsibilities.

Deliverable/ | API Naming Auto-Generated API
Responsibility Documentation

Manually Written API
Documentation

Doc comments in source code
(for example, Java APIs).

Location Source code Topics in the documentation

system.

Provides initial information
or specification, reviews
when written.

Developer Creates initially, imple- Creates initially and maintains
ments review. in the code, implements review.
Responsible for production.

tes and maintains, im-
ts review. Responsible

Technical Performs a thorough re- | Performs a thorough review in
writer view in cooperation with | cooperation with developers.
developers.

API Reviews
APl Naming Review

Review of API naming by a technical writer is i ensure that the names of
API elements are meaningful, clear, consi planatory. It is important to
review the API naming early on in the nt cycle to minimize changes later on,
especially if the APIs will be used int development groups in the orga-
nization much earlier than they are

Review of Documentation Com

If the API documentation ¢ e generated automatically, it is written manually by
a technical writer. In this case; a developer should provide a document with the API
specifications. The technical writer will review and use these specifications as a source
for documentation topics, editing them as required.

Note

Even though it is possible to review comments later on in a development cycle, it is more practical to
review names and comments together to ensure their correctness and consistency. A mismatch between
an APl member name and its description indicates that one of them is incorrect.

The following figure depicts an interactive API review process, which applies to both
auto-generated and manually written API documentation.

Developer Technical Writer Developer

* Prepares initial APl names * Performs an initial review. * Agrees with the technical
and descriptions. * Discusses it with developer. writer on the final review.

* Submits to an technical « Finalizes the review. = Implements all corrections as
writer for review. agreed.

© tcworld 2018 9

API Documentation Processes

An API review can be performed in any format that is convenient for both technical
writer and developer. You can use a code review tool such as Gerrit or work on copies
of source code files or generated output.

Process Guidelines for Development Teams

1. Plan API reviews in the same development cycle with the API implementation.

2. Include API reviews in the relevant backlog items.

3. Prepare the API specifications.

4. Submit the APIs for review as soon as possible; late submissions put the review at
risk.

. Implement the review feedback in full, otherwise you lose part of its benefits.

. Implement the review before APIs are used by any clients (internal and external).

7. For auto-generated API documentation, perform a quality check, as described in

3.3 API Reference Quality Checklist [page 12].

[o)|E)}

Translation Considerations

In most cases, API reference documentation is delivered
product needs to be localized. However, sometimes it can
languages. In this case, technical writers should take i C
ations for the target languages.

glish only, even if the
anslated into selected
t translation consider-

3.1 APl Naming Guidelines

Meaningful, clear, and self-explanatory n
consistent naming conventions across
of these platforms by customers

actor in API’s usability. Using
\PIs contributes to easier adoption

Even though API names are oft i yadevelopers, it is important for technical
writers to be involved to ensur es are:

|
a
(2]
».
B
0Q
o)
o
=
=
(9%
Q
—+
—+

Consistent,
— Compliant e naming conventions for the relevant language or
technology.

Word Combination Conven

In many cases, a single word is not enough to convey the meaning of an API element,
so a name will be a combination of two or more words. The common word combination
conventions for names in different languages are as follows:

— Case-separated words: PascalCase or camelCase.
— Words in lower case delimited by the underscore: snake case.
— Words in lower case delimited by the hyphen: kebab-case.

None of these conventions is a preferred industry standard, especially regarding the pa-
rameter and property names. The choice of convention largely depends on the original
language in which the APIs are written. The following guidelines apply to the languages
and technologies such as Java, JavaScript, C/C++, .NET and REST APIs.

10 © tcworld 2018

4 Java, JavaScript and MS.NET API
Reference Documentation

Standards and guidelines discussed in this chapter apply to API reference documenta-
tion that is auto-generated from Java, JavaScript and Microsoft. NET source code.

4.1 Documentation Comments

API reference documentation is generated from the documentation comments that are

written in the API source code according to certain rules.

A documentation comment should precede the declaration statement of a namespace,
class, interface, or class or interface element. A comment is made up of two parts: de-

scription and block tags, separated by delimiters.

The following figures show the structure and syntax of a documentation comment.

Java, JavaScript

Begin-comment Inline Tag
delimiter
*x
At #* Returns an Image object that ca on the screen.
Description #* The url argument must specify k URL}. The name
* argument is a specifier that] to the url argument.
__—Ep
Paragraph * This method always retur] whether or not the
delimiter * image exists. 1 to draw the image on
* the screen, the - e graphics primitives
* that draw the ima enentally paint on the screen.
Description-ta: e
d rp1 9 # @param url an ing the base location of the image
elimiter # @param name th the image, relative to the url argument
//,/‘* @return specified URL
»*
Block tags

. String name) {

mage(new URL{url. name)):
rmedURLException e) {

End-comment
delimiter

Declaration

© tcworld 2018

13

Java, JavaScript and MS.NET API Reference Documentation

.NET

/**

* Jsummary>

Begin-comment

<para>*Returns an Image objec at can painted on (=]
delimiter * t bject that be painted on th

* screen</para>

* </ summary>
Description *

* <remarks>

* <para>The url argument must specify an absolute

[*-URL. The name argument is a

. ,f”’* specifier that is relative to the url argument.</para>

Inline tag .

* <para>This method always returns immediately, whether or not the

|* image exists. When this applet attempts to draw the image on
Paragraph ,///’* the screen, the data will be loaded. The graphics primitives
delimiter * that draw the image incrementally paint on the screen.

* </para>
* </remarks>

*
Description-tag /;/<param name="url">

delimiter <para>An absolute URL giving t se location of the image.
* </para>
/////* </param>
* <param name="name">
Block tags * <para>The location of the ge, ative to the url
\ * argument.</para>
* < /param>
} <returns>
End-comment * <para>The image, at)t ied URL.</para>
delimiter \\\\\ </returns>
url, string name) { |
Declaration
For NET APTs, itd cumentation comments in an external XML file

eference that file in the source code.

Description is the firs mandatory part of a documentation comment for a class,
interface, or class or interface element.

A description is usually made up of two parts:

— A mandatory summary sentence containing a short and exact description of the de-
clared member.

— An optional detailed description that provides additional information about this ele-
ment.

Guidelines

— In the summary sentence, omit clauses like "This class" or "This method". For an
element that represents an action, start directly with a verb in the third-person form:
adds, allocates, constructs, converts, deallocates, destroys, gets, provides, reads, re-
moves, represents, returns, sets, saves and so on. For example:
> Adds a new customer
> Provides read and write access to employee data
> Retrieves a Role object

14 © tcworld 2018

Java, JavaScript and MS.NET API Reference Documentation

— For an element that represents an object rather than an action, use a noun phrase.

For example:
> Base class for navigation
> Alias of a backend system
— Write the detailed description only to provide additional information that does not
repeat the self-explanatory API name or the summary sentence.
— Avoid implementation details and dependencies unless they are important for usage.
— To avoid line wrapping, make sure each line of the description has fewer than
80 characters.
— In the output, the line breaks in a description are ignored, and it appears as a con-
tinuous text. To format descriptions, use HTML tags.
— To offset language keywords, API names, and code examples in a description, use the
<code> tag.

Syntax
Java and JavaScript

Only the summary sentence, terminated by the first period, appears in the summary
section of a generated reference. Everything after the first peri cut off, so make
sure that the summary sentence can stand on its own.

Java
/**
* This is the summary sentence.
* <p>
* This is the detailed description. Notg ‘that n have multiple
* sentences in the detailed descgipti
* </p>
**/
NET

et iption are enclosed by the dedicated tags,
o format descriptions, use the <para> tag.

The summary sentence
<summary> and <remar

Code Syntax
NET

<summary>
<para>This is the summary sentence.</para>
</summary>
<remarks>
<para>This is the detailed description.</para>
<para>Note that you can have multiple sentences in the detailed
description.</para>
</remarks>

Related Information

4.2.1 Java and JavaScript Tags [page 17]
4.2.4 NET Tags [page 31]

4.2.5 HTML Tags [page 36]

7 External Resources [page 66]

© tcworld 2018 15

Java, JavaScript and MS.NET API Reference Documentation

4.3.4 Method Template
A template for documenting a method.
The doc comment should provide the following information:

— Background information necessary to understand and use this method.
— Special considerations that apply to this method.

Documentation comments for a method are comprised of two parts: description and
block tags. A description has a mandatory first sentence and optional additional sen-
tences. Block tags are listed in a specific order, as shown below.

Syntax

/**

* Constructs/Returns/Sets/Displays/Adds/Removes/Creates/Releases/Other verb
the ...

<p>More information</p>

*

3

* @param paraml name A(n) <code>paraml type</cod ect that
* @param param2_name A(n) <code>param2_ type</code>

* @return A(n) <code>method type</code> object tha

* @throws exception name If ...

* @see

* @since

* @deprecated As of

k

Replaced by {@link anotherMethod na
*/ public method type method name{paraml raml name, param2 type)
throws exception name;

The following table lists standar¢
method types, such as constructo

ions touse for descriptions of different
etters, and so on:

Method Type

Constructor

Boolean

Getter

Setter
Other

The description of a setter method should contain the default value of the property to
be set, if any. If the property is set via a constructor, you should mention the default
value in the description of the constructor.

Note
You can add snippets of codes to this template using the <pre> HTML tag inside paragraph tags.

* <p>For example:
<p re>

* ¥ % X

:/pre>
</p>

42 © tcworld 2018

Java, JavaScript and MS.NET API Reference Documentation

Constructor Example

/**

* Constructs a new HTTP request.
*

* @param logonToken A <code>String</code> used to log on to the session

* @throws Exception If the object is not correctly initialized

*/

public Request(String logonToken) throws Exception { this.logonToken = logon-
Token;

}

Accessor Example

/**

* Returns the fully qualified table name that identifies a table.

* <p>

* The returned string is formatted as "qualifier"."owner"."tablename".
* </p>

*

* @param qualifier A <code>String</code> that represents
table

* @param owner A <code>String</code> that represent
* @return A <code>String</code> containing the ful
* @see #splitTableFullName(String)

* @since 14.1.2

*/

String getTableFullName(String qualifier, String String table);

e qualifier of the

the table

qualifie le name

Setter Example

/**

* Sets the column description.
*

* @param value A <cod that represents description of the col-

Boolean Example

/**

* Indicates whether the object is mandatory in the query.
E3

* @return <code>true</code> if it is mandatory, <code>false</code> otherwise
* @see #setMandatory(boolean)

*/

boolean isMandatory();

© tcworld 2018 43

5 REST and OData APl Reference Documentation

Background information, guidelines and recommendations for the authoring of auto-
generated and manual REST and OData API reference documentation.

About REST APIs

REST (Representational State Transfer) APIs, also known as RESTful Web services,
are cross-platform APIs used to perform CRUD (Create, Read, Update, Delete) opera-
tions on data resources over HTTP. This is done by sending a standard HTTP method
request to a specific resource URL and receiving an HTTP response in a structured
format.

The following table maps data operations to HTTP methods:

CRUD Operation HTTP Method

Create PUT/POST
Read GET
Update PUT/PATCH
Delete DELETE

Unlike APIs in object-oriented languages, REST APIs have a flat structure. An indi-
vidual REST method is defined by the following:

Resource URL

Operation (HTTP method)

Request format

Request parameters Response form:

A REST service is usually a collection ted ods that perform different data
operations on the same resource or r sources and/or provide related
functionality.

About OData

The Open Data Proto d by OASIS, is a standard protocol for interact-
ing with data via REST . The protocol supports the description of data
models and the editing an g of data according to those models.

An OData service is an implementation of the OData protocol that exposes data to ex-
ternal clients. Exposed data is described by an abstract Entity Data Model (EDM). The
central concepts in the EDM are entities, entity sets, relationships, and operations.

— Entities are data objects of a certain type, such as Customer or Employee.
— Entity sets are named collections of entities, such as Customers.

— Relationships connect one entity to another.

— Operations, such as Create or Update, are executed on entities.

Client applications can query an OData service to discover its data model and capabili-
ties, and perform CRUD (Create, Read, Update, Delete) operations on entities using
REST APIs.

The following figure displays a fragment of a sample data model generated by querying a
publicly available OData service (http://pragmatiga.com/xodata/).

© tcworld 2018 47

REST and OData API Reference Documentation

[Product =] FeaturedProduct
D = E
Neme [m]

s e A

Roing (=]
Fice (a5
ComplexT-1::1

% =

E_,E
8

-

@ ProductDetail [:=| Supplier [:=| Advertisement 3|

ID = ProductiD = D = D i=

Neme [=]
#

Location uct
Concurrency

OData Service Types and Documentation Requirement,

OData services can be divided into two main

— OData producer services.
Services that expose their data using RES ording to the OData protocol.
— OData consumer services.
Applications that consume O € ‘
ent languages to facilitate data example, client libraries for various devel-
opment platforms and devices

Publisher Example
OData vho di roducer OData APIs are REST-based. Documenta- | OData REST API
producer me t tion should include information about the EDM,
ducer's data i service endpoints and permissions, supported au-
in their applica thentication protocols, supported OData features
create their own con- | and versions of the protocol, relevant implementa-
sumer services. tion specifics and limitations, resources and opera-
tions.
OData Developers who access | APl documentation is written according to the XOData: Visual-
consumer | the data from their standard for the platform, technology, or language | izer and Explorer
client apps using the in which the APIs are created, such as Java or .NET. | of OData Services
consumer’s APls.

Related Information

Resource Naming Conventions for REST APIs [page 11]

48 © tcworld 2018

6 Writing Developer Guides

Guidelines and best practices for writing helpful developer guides.

Developer guides differ by various parameters, such as platform, technology, product,
scope, size and more, so there is no one-fits-all standard. Here are some generic guide-
lines how to make your developer guides clear, concise, helpful, and pleasant to use.

A typical developer guide has the following characteristics:

— It complements API reference documentation by explaining how to use the APIs
(and/or services, SDK, development platform).
— It contains information of the following types:
> Conceptual: the subject domain background, goal, scope and capabilities of the
APIs, architectural diagrams that explain the API structure and the usage flow
from the user perspective.
> How to access the APIs: security requirements, initial setup, configuration, etc.
> How to use the APIs: typical tasks and scenarios, code samples, tutorials, tips and
tricks, usage
considerations.

— Itis created and maintained by technical writers in the entation systems.
— It is written in free style.
— It is delivered as part of product documentation.

— It has an effective navigation and search capabilit

6.1 Integration of APl Refere tion

The currently available auto-ge ovide a natural way to integrate a
generated API reference with a loper guide. Unless this integration is sup-
ported by a custom solution, dir i the developer guide topics to the corre-
sponding API reference pages mi ematic. If this is the case, make sure that
your developer guide has i isi k to the entry point of the API reference.

If the API refere i , you have more freedom to integrate it with the
rest of the gui i ake it a separate reference chapter in your guide or
scenarios. From the task topics, you can link to the relevant
reference topics.

6.2 Writing Gui

Information Design

— Maintain efficient structure: have separate chapters for concepts, tasks, and refer-
ence.

— Apply task-oriented rather than descriptive approach.

— Maintain consistent topic title conventions across the guide.

— Enable easy navigation in the guide.

Choice of Content

— A developer guide should not attempt to cover all APIs in a product. Work with a
product owner to determine which use cases need to be included in the guide and
plan the topics accordingly.

— Keep the guide topics short and concise.

— Provide only information that is relevant for customers. Avoid describing internal
implementation details.

64 © tcworld 2018

Writing Developer Guides

— Good diagrams help a lot to understand concepts. However, make sure they are not
too complex or cluttered by redundant details. If you reuse internal architectural dia-
grams, adapt them for external customers by removing irrelevant parts.

Code Samples

— To explain specific tasks, provide helpful code samples rather than verbose explana-
tions.
— Get code samples from developers, and make sure that they:
> Compile without errors.
> Are short, contain code only to illustrate the usage of an APIL.
> Are sufficiently commented.
> Can easily be copied and pasted into a code editor.
— For complex implementation tasks, use tutorial format, breaking it down into smaller

chunks or subtopics.

© tcworld 2018 65

