
Practical Guides

For Technical Writers, Software Developers,
Information and Software Architects

Standards and
Guidelines for API
Documentation

Anne Tarnoruder

Ex
tra
ct

Ex
traa
ct

Enical nical

tnnationion

 © tcworld 20186

1 Introduction
The purpose of standards and guidelines (S&G) for API documentation is to help
achieve consistency of content and style across various types and areas of the API
documentation.

API Documentation Deliverables

API documentation deliverables fall into two complementary categories: API reference
documentation and developer guides.

Documentation
Deliverable

Description

API reference Contains detailed reference information about all elements of APIs.

Created and maintained by developers in software source code, reviewed by technical
writers.

Written in structured mode.

Auto-generated from source code and integrated with the relevant developer guide or
delivered separately.

If auto-generation option is not available or not applicable, written manually by technical
writers in the documentation system as part of developer guides.

Developer guide Explains how to use the APIs.

Contains concepts, diagrams, setup information, tutorials, tasks, code samples, and more.

Created and maintained by technical writers in cooperation with developers in the docu-
mentation system.

Written in freestyle mode.

Delivered as part of the product documentation.

Scope and Target Audience

Standards and guidelines defined in this document:

 − Apply mostly to API reference documentation and define the writing style and for-
matting rules for this documentation.

 − Encompass major development languages and technologies, such as Java, JavaScript,
Microsoft.NET, C/C++, REST and OData.

 − Are targeted at technical writers and software developers who co-author API refer-
ence documentation either in source code or in the documentation system.

The following topics are out of scope of this document:

 − API design principles and guidelines.
 − Actual auto-generation and production of API documentation.

ac
xt

ated with the releth the

able or not applicable, written ot applicable, written
em as part of developer guidesof developer gu

ms, setup information, tutoriainformation, tu

ned by technical writers in coopechnical writers in coo

estyle mode.mode.

as part of the product documeof the product docum

diencedienc

d guidelines defined in thd guidelines defined i

y to API reference dy to API reference d
or this documeor this docume

devdevelopmelop
++, R++, R

© tcworld 2018 7

2 Terms and Concepts
Introduces the main concepts and terminology of APIs and API documentation.

Introduction to APIs

API (Application Programming Interface) is an interface provided by an application for
interacting with other applications. Essentially, an API comprises functions that other
applications can call and data they can access.

The following figure illustrates the basic structure of an API in object-oriented lan-
guages such as Java, JavaScript, .NET, or C/C++, which are discussed in this document,
and introduces the main API terms.

The following figure shows a sample Java API structure (SAP NetWeaver 7.50 Enter-
prise Portal): Exshows a sample Java APshows a sample Jav

 © tcworld 20188

Terms and Concepts

Glossary

The following table introduces the API terms and terms related to API documentation,
which are used in this document.

Term Definition

API element A generic name for any element of an API, such as a package, namespace, interface, class,
method, property, constant, or enumeration.

API documen-
tation com-
ment

A description written in the source code for each API element according to certain rules and
syntax. These comments are processed by documentation generators. When documentation
generation is not available or applicable for certain scenarios or types of APIs they are docu-
mented manually.

For more information, see 4.1 Documentation Comments [page 13].

API documen-
tation genera-
tors

Tools that process source code to extract documentation comments and generate structured
API reference documentation, for example, the widely-used industry tools, such as Javadoc,
JSDoc, Doxygen, and Swagger.

documenta-
tion tag

A tag in a documentation comment that instructs the generator how to format this part of
the comment. Each generator recognizes its own set of tags, however, there is a subset of
commonly used tags supported by most generators.

For more information, see 4.1.2 Tags [page 16] and 4.2 Documentation Tags [page 17].

Note that this document describes a subset of the most commonly used tags. For a complete
reference of tags for a certain language or technology, refer to 7 External Resources [page
66].

deprecated The state of an API element that will no longer be supported in future releases, and therefore
is not recommended for use. Deprecated elements cannot be immediately removed from APIs,
because this can break existing client code. Deprecation is a tool for ensuring smooth transi-
tion between API releases.

Deprecated elements must be documented according to the guidelines described in
4.2.1.1 @deprecated Tag [page 17].

exception An event that is generated when an error occurs during the execution of a method. Excep-
tions must be caught and handled by a calling application, therefore they need to be docu-
mented along with the method.

For documentation guidelines, see 4.2.1.9 @throws Tag [page 26] and 4.2.4.2 <exception>
Tag [page 32].

public vs.
private APIs

An API is public if it is available in the public domain. An API is private or internal, if access to
it is limited to the vendor company and/or to its partners or selected customers.

Once an API becomes available, both publicly or internally, it is a contract between the vendor
and its clients, so it should not be changed in a way that can break existing client code.

return type,
value

A value of a certain data type that is returned by a method.

For documentation guidelines, see 4.2.1.6 @return Tag [page 23] and 4.2.4.6 <returns>
Tag [page 35].

REST (Repre-
sentational
State Transfer)
APIs

REST APIs also known as RESTful Web services are cross-platform APIs used to perform CRUD
(Create, Read, Update, Delete) operations on data resources over HTTP.

For background information and documentation guidelines, see 5 REST and OData API Refer-
ence Documentation [page 47].

SPI (Service
Provider
Interface)

An interface defined by a vendor platform to be implemented or extended by a third-party
application to provide a service integrated with the platform.

For documentation guidelines, see 4.3.3 Interface and Class Template [page 40].

EEEx
trxtxtr
ac
t
ac

generagen
set of tags, hof tags, h

ators.

16] and d 4.2 Documentation4.2 Documentation

ubset of the most commonly ue most commonly u
uage or technology, refer to technology, refer to 7 E

that will no longer be supportll no longer be supp
use. Deprecated elements cannprecated elements can

k existing client code. Deprecaexisting client code. Depreca
eleases.ses.

ements must be documented amust be documented
eprecated Tag [page 17]Tag [page 17]..

nt that is generated when an ent that is generated when a
ns must be caught and handledns must be caught and handled

mented along with the methodmented along with the met

or documentation guidelior documentation guidel
page 32]page 3 .

public if ipublic if i
to thto t

© tcworld 2018 9

3 API Documentation Processes
Outlines recommended processes and workflows for creating API reference documen-
tation.

Roles and Responsibilities

The following table describes the roles involved in the authoring of API reference docu-
mentation and their respective responsibilities.

Deliverable/
Responsibility

API Naming Auto-Generated API
Documentation

Manually Written API
Documentation

Location Source code Doc comments in source code
(for example, Java APIs).

Topics in the documentation
system.

Developer Creates initially, imple-
ments review.

Creates initially and maintains
in the code, implements review.
Responsible for production.

Provides initial information
or specification, reviews
when written.

Technical
writer

Performs a thorough re-
view in co operation with
developers.

Performs a thorough review in
cooperation with developers.

Creates and maintains, im-
plements review. Responsible
for production.

API Reviews

API Naming Review

Review of API naming by a technical writer is essential to ensure that the names of
API elements are meaningful, clear, consistent, and self-explanatory. It is important to
review the API naming early on in the development cycle to minimize changes later on,
especially if the APIs will be used internally by other development groups in the orga-
nization much earlier than they are released to customers.

Review of Documentation Comments

If the API documentation is generated automatically, the developer writes and main-
tains documentation comments in the source code. In this case, the technical writer
should review these comments to ensure their quality.

If the API documentation cannot be generated automatically, it is written manually by
a technical writer. In this case, a developer should provide a document with the API
specifications. The technical writer will review and use these specifications as a source
for documentation topics, editing them as required.

Note
Even though it is possible to review comments later on in a development cycle, it is more practical to
review names and comments together to ensure their correctness and consistency. A mismatch between
an API member name and its description indicates that one of them is incorrect.

The following figure depicts an interactive API review process, which applies to both
auto-generated and manually written API documentation.

Ex
tra
cttttctctct
wh

w in
opers.

Creates Crea
plements replement
for productionfor production

writer is essential to ensu essential to ensu
consistent, and self-exponsistent, and self-exp

n the development cycle e development cycle
ed internally by other deernally by other

ey are released to custoreleased to custo

mentsments

tation is generated autotation is generated au
comments in the socomments in the so

mments to ensumments to ensu

cannot bcannot b
e ae a

 © tcworld 201810

API Documentation Processes

An API review can be performed in any format that is convenient for both technical
writer and developer. You can use a code review tool such as Gerrit or work on copies
of source code files or generated output.

Process Guidelines for Development Teams

1. Plan API reviews in the same development cycle with the API implementation.
2. Include API reviews in the relevant backlog items.
3. Prepare the API specifications.
4. Submit the APIs for review as soon as possible; late submissions put the review at

risk.
5. Implement the review feedback in full, otherwise you lose part of its benefits.
6. Implement the review before APIs are used by any clients (internal and external).
7. For auto-generated API documentation, perform a quality check, as described in

3.3 API Reference Quality Checklist [page 12].

Translation Considerations

In most cases, API reference documentation is delivered in English only, even if the
product needs to be localized. However, sometimes it can be translated into selected
languages. In this case, technical writers should take into account translation consider-
ations for the target languages.

3.1 API Naming Guidelines
Meaningful, clear, and self-explanatory naming is a key factor in API’s usability. Using
consistent naming conventions across all platform’s APIs contributes to easier adoption
of these platforms by customers and partners.

Even though API names are often defined by developers, it is important for technical
writers to be involved to ensure that these names are:

 − Written in professional and correct English.
 − Using correct terminology.
 − Consistent, meaningful, and unambiguous.
 − Compliant with the industry-wide naming conventions for the relevant language or
technology.

Word Combination Conventions

In many cases, a single word is not enough to convey the meaning of an API element,
so a name will be a combination of two or more words. The common word combination
conventions for names in different languages are as follows:

 − Case-separated words: PascalCase or camelCase.
 − Words in lower case delimited by the underscore: snake_case.
 − Words in lower case delimited by the hyphen: kebab-case.

None of these conventions is a preferred industry standard, especially regarding the pa-
rameter and property names. The choice of convention largely depends on the original
language in which the APIs are written. The following guidelines apply to the languages
and technologies such as Java, JavaScript, C/C++, .NET and REST APIs.

Ex
tra
ct

red in Engin En
s it can be transbe tra

take into account tranto account tra

natory naming is a key fanaming is a key f
across all platform’sacross all platform’s APAP

ers and partners.and partne

are often defined by devten defined by d
o ensure that these name that these nam

ssional and correct Englssional and correct En
terminology.termi

meaningful, and unambmeaningful, and una
with the industry-widwith the industry-wid

ntionntion

© tcworld 2018 13

4 Java, JavaScript and MS.NET API
Reference Documentation

Standards and guidelines discussed in this chapter apply to API reference documenta-
tion that is auto-generated from Java, JavaScript and Microsoft.NET source code.

4.1 Documentation Comments
API reference documentation is generated from the documentation comments that are
written in the API source code according to certain rules.

A documentation comment should precede the declaration statement of a namespace,
class, interface, or class or interface element. A comment is made up of two parts: de-
scription and block tags, separated by delimiters.

The following figures show the structure and syntax of a documentation comment.

Java, JavaScript

Ex
tra
ct

 © tcworld 201814

Java, JavaScript and MS.NET API Reference Documentation

.NET

For .NET APIs, it is possible to place documentation comments in an external XML file
and then use the <include> tag to reference that file in the source code.

4.1.1 Description
Description is the first and mandatory part of a documentation comment for a class,
interface, or class or interface element.

A description is usually made up of two parts:

 − A mandatory summary sentence containing a short and exact description of the de-
clared member.

 − An optional detailed description that provides additional information about this ele-
ment.

Guidelines

 − In the summary sentence, omit clauses like "This class" or "This method". For an
element that represents an action, start directly with a verb in the third-person form:
adds, allocates, constructs, converts, deallocates, destroys, gets, provides, reads, re-
moves, represents, returns, sets, saves and so on. For example:
 › Adds a new customer
 › Provides read and write access to employee data
 › Retrieves a Role object

t is possible to place doct is possible to place doc
he he <include><include> tag to refeo r

onon
t and mt and m

er

© tcworld 2018 15

Java, JavaScript and MS.NET API Reference Documentation

 − For an element that represents an object rather than an action, use a noun phrase.
For example:
 › Base class for navigation
 › Alias of a backend system

 − Write the detailed description only to provide additional information that does not
repeat the self-explanatory API name or the summary sentence.

 − Avoid implementation details and dependencies unless they are important for usage.
 − To avoid line wrapping, make sure each line of the description has fewer than
80 characters.

 − In the output, the line breaks in a description are ignored, and it appears as a con-
tinuous text. To format descriptions, use HTML tags.

 − To offset language keywords, API names, and code examples in a description, use the
<code> tag.

Syntax

Java and JavaScript

Only the summary sentence, terminated by the first period, appears in the summary
section of a generated reference. Everything after the first period is cut off, so make
sure that the summary sentence can stand on its own.

Java

/**
 * This is the summary sentence.
 * <p>
 * This is the detailed description. Note that you can have multiple
 * sentences in the detailed description.
 * </p>
 **/

.NET
The summary sentence and detailed description are enclosed by the dedicated tags,
<summary> and <remarks>. To format descriptions, use the <para> tag.

Code Syntax
.NET

<summary>
 <para>This is the summary sentence.</para>
</summary>
<remarks>
 <para>This is the detailed description.</para>
 <para>Note that you can have multiple sentences in the detailed
description.</para>
</remarks>

Related Information

4.2.1 Java and JavaScript Tags [page 17]
4.2.4 .NET Tags [page 31]
4.2.5 HTML Tags [page 36]
7 External Resources [page 66]

Ex
tra
ct

appearspears
period is cuiod is

xtr
acte that you can

ription.

and detailed descriptionand detailed descriptio
ks>ks>. To format descripti. To format descripti

E

 © tcworld 201842

Java, JavaScript and MS.NET API Reference Documentation

4.3.4 Method Template
A template for documenting a method.

The doc comment should provide the following information:

 − Background information necessary to understand and use this method.
 − Special considerations that apply to this method.

Documentation comments for a method are comprised of two parts: description and
block tags. A description has a mandatory first sentence and optional additional sen-
tences. Block tags are listed in a specific order, as shown below.

Syntax

/**
 * Constructs/Returns/Sets/Displays/Adds/Removes/Creates/Releases/Other_verb
the ...
 * <p>More information</p>
 *
 * @param param1_name A(n) <code>param1_type</code> object that ...
 * @param param2_name A(n) <code>param2_type</code> that ...
 * @return A(n) <code>method_type</code> object that ...
 * @throws exception_name If ...
 * @see
 * @since
 * @deprecated As of
 * Replaced by {@link anotherMethod_name}
 */ public method_type method_name(param1_type param1_name, param2_type)
throws exception_name;

The following table lists standard formulations to use for descriptions of different
method types, such as constructors, setters, getters, and so on:

Method Type Verb to Use

Constructor Constructs

Boolean Indicates (whether...)

Getter Returns/retrieves/gets

Setter Defines/sets

Other Adds/Removes/Creates/Releases/Other_verb that applies

The description of a setter method should contain the default value of the property to
be set, if any. If the property is set via a constructor, you should mention the default
value in the description of the constructor.

Note
You can add snippets of codes to this template using the <pre> HTML tag inside paragraph tags.

* <p>For example:
* <pre>
* …
* </pre>
* </p>

Ex
tratra
ct

e> obj
> tha

that ...

me}
aram1_type par

dard formulations to usd formulations to us
structors, setters, getterors, setters, ge

Ex
tr

EEx
t

Ex
t

EEEEEEExExEE
ConstructsConstructs

Indicates (whether...)Indicates (whether...

Returns/retrieves/geReturns/retrieves/ge

Defines/setsDefines/sets

s/Remos/Remo

© tcworld 2018 43

Java, JavaScript and MS.NET API Reference Documentation

Constructor Example

/**
 * Constructs a new HTTP request.
 *
 * @param logonToken A <code>String</code> used to log on to the session
 * @throws Exception If the object is not correctly initialized
 */
public Request(String logonToken) throws Exception { this.logonToken = logon-
Token;
}

Accessor Example

/**
��������	
�������

�����
��������
��	������������	����
������
��
 * <p>
������������	���
���	���
������������
�����
���������	��������
�	�����
 * </p>
 *
�������������
��������!���"#���	��$!���"�����������
�	�
��������
������������
table
 * @param owner A <code>String</code> that represents the owner of the table
���������	����!���"#���	��$!���"�!�	���	�	��������

�����
��������
��	���
 * @see #splitTableFullName(String)
 * @since 14.1.2
 */
#���	��������
�&�

'���+#���	�����
����0�#���	����	��0�#���	�����
�35

Setter Example

/**
 * Sets the column description.
 *
 * @param value A <code>String</code> that represents description of the col-
umn
 * @see #getDescription()
 */
public void setDescription(String value);

Boolean Example

/**
 * Indicates whether the object is mandatory in the query.
 *
 * @return <code>true</code> if it is mandatory, <code>false</code> otherwise
 * @see #setMandatory(boolean)
 */
boolean isMandatory();

EE
trara
ct

����

ts the owner of

�����
��������

��	����	��0�

Ex
trde>String</code> tha

iptio

cription(String

© tcworld 2018 47

5 REST and OData API Reference Documentation
Background information, guidelines and recommendations for the authoring of auto-
generated and manual REST and OData API reference documentation.

About REST APIs

REST (Representational State Transfer) APIs, also known as RESTful Web services,
are cross-platform APIs used to perform CRUD (Create, Read, Update, Delete) opera-
tions on data resources over HTTP. This is done by sending a standard HTTP method
request to a specific resource URL and receiving an HTTP response in a structured
format.

The following table maps data operations to HTTP methods:

CRUD Operation HTTP Method

Create PUT/POST

Read GET

Update PUT/PATCH

Delete DELETE

Unlike APIs in object-oriented languages, REST APIs have a flat structure. An indi-
vidual REST method is defined by the following:

 − Resource URL
 − Operation (HTTP method)
 − Request format
 − Request parameters Response format

A REST service is usually a collection of related methods that perform different data
operations on the same resource or related set of resources and/or provide related
functionality.

About OData

The Open Data Protocol (OData), defined by OASIS, is a standard protocol for interact-
ing with data via RESTful interfaces. The protocol supports the description of data
models and the editing and querying of data according to those models.

An OData service is an implementation of the OData protocol that exposes data to ex-
ternal clients. Exposed data is described by an abstract Entity Data Model (EDM). The
central concepts in the EDM are entities, entity sets, relationships, and operations.

 − Entities are data objects of a certain type, such as Customer or Employee.
 − Entity sets are named collections of entities, such as Customers.
 − Relationships connect one entity to another.
 − Operations, such as Create or Update, are executed on entities.

Client applications can query an OData service to discover its data model and capabili-
ties, and perform CRUD (Create, Read, Update, Delete) operations on entities using
REST APIs.

The following figure displays a fragment of a sample data model generated by querying a
publicly available OData service (http://pragmatiqa.com/xodata/).

Ex
tra
ctAPIs have a flat structue a flat stru

ng:

rmatmat

ection of related methodn of related meth
urce or related set of reselated set of res

ocol (OData), defineocol (OData), define
ful interfaces. Tful interfaces.

nd queryinnd queryin

meme

 © tcworld 201848

REST and OData API Reference Documentation

OData Service Types and Documentation Requirements

OData services can be divided into two main types:

 − OData producer services.
Services that expose their data using REST APIs according to the OData protocol.

 − OData consumer services.
Applications that consume OData producer services and publish client APIs in differ-
ent languages to facilitate data access, for example, client libraries for various devel-
opment platforms and devices or open data portals.

Audience and documentation requirements differ for APIs published by OData produc-
ers and consumers:

Publisher Audience Documentation Requirements Example

OData
producer

Developers who direct-
ly consume the pro-
ducer’s data services
in their applications or
create their own con-
sumer services.

Producer OData APIs are REST-based. Documenta-
tion should include information about the EDM,
service endpoints and permissions, supported au-
thentication protocols, supported OData features
and versions of the protocol, relevant implementa-
tion specifics and limitations, resources and opera-
tions.

OData REST API

OData
consumer

Developers who access
the data from their
client apps using the
consumer’s APIs.

API documentation is written according to the
standard for the platform, technology, or language
in which the APIs are created, such as Java or .NET.

XOData: Visual-
izer and Explorer
of OData Services

Related Information

Resource Naming Conventions for REST APIs [page 11]

Ex
tra
ctrementsts

ain types:pes

sing REST APIs accordiREST APIs accor

OData producer servicesData producer services
 data access, for exampla access, for e

devices or open data poes or open data p

entation requirements dequirements d

ExExExExExExExence Doc

elopers who direct-elopers who d
ume the pro-ume the

a services a services
ations ations

ProdProd
t

 © tcworld 201864

6 Writing Developer Guides
Guidelines and best practices for writing helpful developer guides.

Developer guides differ by various parameters, such as platform, technology, product,
scope, size and more, so there is no one-fits-all standard. Here are some generic guide-
lines how to make your developer guides clear, concise, helpful, and pleasant to use.

A typical developer guide has the following characteristics:

 − It complements API reference documentation by explaining how to use the APIs
(and/or services, SDK, development platform).

 − It contains information of the following types:
 › Conceptual: the subject domain background, goal, scope and capabilities of the

APIs, architectural diagrams that explain the API structure and the usage flow
from the user perspective.

 › How to access the APIs: security requirements, initial setup, configuration, etc.
 › How to use the APIs: typical tasks and scenarios, code samples, tutorials, tips and

tricks, usage
considerations.

 − It is created and maintained by technical writers in the documentation systems.
 − It is written in free style.
 − It is delivered as part of product documentation.
 − It has an effective navigation and search capabilities.

6.1 Integration of API Reference Documentation
The currently available auto-generation tools don’t provide a natural way to integrate a
generated API reference with a written developer guide. Unless this integration is sup-
ported by a custom solution, direct linking from the developer guide topics to the corre-
sponding API reference pages might be problematic. If this is the case, make sure that
your developer guide has a highly visible link to the entry point of the API reference.

If the API reference is written manually, you have more freedom to integrate it with the
rest of the guide. You can either make it a separate reference chapter in your guide or
distribute topics by usage scenarios. From the task topics, you can link to the relevant
reference topics.

6.2 Writing Guidelines
Information Design

 − Maintain efficient structure: have separate chapters for concepts, tasks, and refer-
ence.

 − Apply task-oriented rather than descriptive approach.
 − Maintain consistent topic title conventions across the guide.
 − Enable easy navigation in the guide.

Choice of Content

 − A developer guide should not attempt to cover all APIs in a product. Work with a
product owner to determine which use cases need to be included in the guide and
plan the topics accordingly.

 − Keep the guide topics short and concise.
 − Provide only information that is relevant for customers. Avoid describing internal
implementation details.

Ex
tra
cts in the documendocum

ation.
h capabilities.ies.

ference Documentatnce Documenta
eneration tools don’t prneration tools don’t pr

th a written developer gwritten developer g
on, direct linking from trect linking from

e pages might be problemight be proble
e has a highly visible line has a highly visible lin

nce is written manually,nce is written manually
de. You can either makede. You can either m
ics by usage scenariosics by usage scenarios

dd

© tcworld 2018 65

Writing Developer Guides

 − Good diagrams help a lot to understand concepts. However, make sure they are not
too complex or cluttered by redundant details. If you reuse internal architectural dia-
grams, adapt them for external customers by removing irrelevant parts.

Code Samples

 − To explain specific tasks, provide helpful code samples rather than verbose explana-
tions.

 − Get code samples from developers, and make sure that they:
 › Compile without errors.
 › Are short, contain code only to illustrate the usage of an API.
 › Are sufficiently commented.
 › Can easily be copied and pasted into a code editor.

 − For complex implementation tasks, use tutorial format, breaking it down into smaller
chunks or subtopics.

Ex
tra
ct

